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Abstract 

Characterisation of highly duplicated genes, such as genes of the major histocompatibility 

complex (MHC), where multiple loci often co-amplify, has until recently been hindered by 

insufficient read depths per amplicon. Here we used ultra-deep Illumina sequencing to resolve 

genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus 

schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as 

a simulated dataset, to test the effect of amplicon coverage (range: 500-20 000 reads per 

amplicon) on the repeatability of genotyping using four different genotyping approaches. A 

third replicate employed unique barcoding to assess the extent of tag jumping, i.e. swapping 

of individual tag identifiers, which may confound genotyping. The reliability of MHC 

genotyping increased with coverage and approached or exceeded 90% within-method 

repeatability of allele calling at coverages of >5 000 reads per amplicon. We found generally 

high agreement between genotyping methods, especially at high coverages. High reliability of 

the tested genotyping approaches was further supported by our analysis of the simulated 

dataset, though the genotyping approach relying primarily on replication of variants in 

independent amplicons proved sensitive to repeatable errors.  According to the most 

repeatable genotyping method, the number of co-amplifying variants per individual ranged 

from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect 

the reliability of genotyping. We thus demonstrate that gene families with many co-

amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per 

amplicon coverage.  
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Introduction 
 

The Major Histocompatibility Complex (MHC) genes encode proteins of key importance in 

adaptive immunity (Janeway et al. 2004) and the MHC region holds the most polymorphic 

genes known in vertebrates (reviewed in Bernatchez & Landry 2003; Sommer 2005). This 

polymorphism is thought to be maintained by balancing selection caused by pathogens, and 

indeed correlations between MHC genotypes and resistance/susceptibility to infection has 

been demonstrated both in humans and in many studies of animal in natural populations 

(reviewed in Blackwell et al. 2009; Piertney & Oliver 2006; Spurgin & Richardson 2010). 

MHC polymorphism can further be promoted by MHC-based mate choice (Ejsmond et al. 

2014; Strandh et al. 2012; Winternitz et al. 2013).  

The number of MHC genes per individual differs greatly between (reviewed in Kelley 

et al. 2005), and even within, species (e.g. fish, Wegner et al. 2003; amphibians, 

Nadachowska-Brzyska et al. 2012; reptiles, Radwan et al. 2014; birds, Bonneaud et al. 2004; 

mammals, Kloch et al. 2010b). In birds, the variation ranges from just a few genes in the 

chicken Gallus gallus and other birds of the Galliformes, to a large number of highly 

polymorphic genes among passerines of the order Passeriformes (Karlsson & Westerdahl 

2013; Kaufman et al. 1999; Radwan et al. 2012; Sepil et al. 2012; Westerdahl et al. 2004a,b). 

Due to gene conversion that occurs both within and between loci, passerine MHC alleles 

exhibit high similarity and it is usually impossible to determine the locus to which a given 

allele belongs (Hess & Edwards 2002; Westerdahl et al. 1999). The presence of multiple 

MHC loci coupled with extensive copy number variation (CNV; e.g. Passer domesticus , 

Bonneaud et al. 2004; Parus major, Sepil et al. 2012; Ficedula albicollis Radwan et al. 2012; 

Acrocephalus spp., O’Connor et al. 2016) makes passerines an ideal system for studying the 

evolution, expansion and contraction of MHC genes. However, this potential has been limited 

by the technical difficulties of genotyping alleles from a large number of loci (Babik 2010). 
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During recent years high-throughput sequencing (HTS) technologies have become a useful 

tool for assessing polymorphism in complex MHC systems (Babik et al. 2009; reviewed in 

Lighten et al. 2014a). Nevertheless, despite significant recent advances in genotyping 

methods, the characterization of MHC variation in non-model species still remains a 

challenging task due to the extremely high numbers of co-amplifying genes. However, new 

platforms offering ultra-high coverage, such as Illumina and Ion Torrent, which have recently 

been used in genotyping multi-locus MHC systems (Herdegen et al. 2014; Lighten et al. 

2014b), offer the potential to overcome this limitation.  

HTS technologies are characterised by a relatively high frequency of sequencing errors 

(Huse et al. 2007; Liu et al. 2012; McElroy et al. 2012), and the ability to discriminate 

between true alleles and artefacts created by HTS is reduced when the number of co-

amplifying loci increase. This difficulty can be aggravated by CNV in MHC genes observed 

in many species (reviewed in Babik 2010; Lighten et al. 2014a; Sommer et al. 2013), and by 

the possibility of tag jumping, i.e. appearance during ligation or pooled PCRs of false tag 

combinations of individual barcodes that can cause incorrect assignment of sequences to 

samples (e.g. Schnell et al. 2015).  

One method that has been used for discriminating true alleles from artefacts is to 

compare obtained frequencies of alleles within amplicons to expectations from genetic models 

(Ferrandiz-Rovira et al. 2015; CNV method in Lighten et al. 2014b). However, this method 

becomes infeasible when the number of loci is high and the copy number varies from a few to 

more than ten, as is the case in some passerine systems (e.g. Sepil et al. 2012; Westerdahl et 

al. 2004a; Zagalska-Neubauer et al. 2010). Other methods rely upon the assumption that true 

alleles will occur at considerably higher frequencies than artefacts (e.g. Babik et al. 2009; 

Kloch et al. 2010a; DOC method in Lighten et al. 2014b; Radwan et al. 2012; Sommer et al. 

2013). However, with a large number of co-amplifying loci, the expected allele frequencies 
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may decline to less than those typically reached by artefacts. For example, artefacts were 

reported to reach 1.5%  per amplicon in flycatchers Ficedula albicollis (Radwan et al. 2012) 

and rose finches Carpodacus erythrinus (Promerová et al. 2012), and 2.5% in great tits Parus 

major (Sepil et al. 2012). Thus, for systems with an extremely high number of co-amplifying 

MHC genes, the effectiveness of discriminating artefacts from true alleles based upon 

frequency is questionable. The most recent genotyping approaches attempt to increase the 

frequencies of true variants versus artefacts by reassigning artefacts to their putative parental 

sequences and thereby increasing the read depths of true variants (Lighten et al. 2014b; Pavey 

et al. 2013; Sebastian et al. 2016; Stutz & Bolnick 2014). However, the performance of such 

approaches in genotyping families of many co-amplifying MHC loci has yet to be tested.  

In this study we tested the potential of ultra-deep amplicon sequencing for 

characterising MHC diversity, using the sedge warbler Acrocephalus schoenobaenus as a test 

subject. MHC diversity has yet to be characterised for this species, but sedge warblers are 

closely related to three species with well-characterised, highly complex MHC systems 

(Acrocephalus arundinaceus, Westerdahl et al. 2004a; Phylloscopus trochilus and P. 

collybita, O’Connor et al. 2016). Using a set of replicated sedge warbler samples, we 

quantitatively evaluated four different approaches for removing artefacts from HTS amplicon 

data and genotyping: (1) Radwan et al. (2012); (2) Sommer et al. (2013); (3) Lighten et al. 

(2014b); and (4) Sebastian et al. (2016). We selected these four genotyping methods because, 

while they all share the assumption that artefacts will be rare compared to the true variants, 

each one is based upon different classifying, clustering or filtering principles, as described 

below. A more detailed description of each algorithm is given in the Methods section.   

The first genotyping method (hereafter referred to as the ‘allele validation threshold 

method’, AVT) was developed by Radwan et al. (2012) and is based upon a combination of 

principles introduced by Kloch et al. (2010a) and Zagalska-Neubauer et al. (2010). This 
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approach relies upon comparing rare variants to more common variants within the same 

amplicon to determine whether the rare variant can be explained as a sequencing artefact (e.g. 

for Illumina data, a variant with 1-2 bp mismatches to another more common variant in a 

given amplicon, Herdegen et al. 2014) or a PCR chimera of more common variants. 

Typically, below a certain threshold (e.g. <1.5% per amplicon in Radwan et al. 2012) the vast 

majority of variants can be explained as sequencing artefacts. By removing all sequences 

below this threshold, possible contaminations, which are typically very rare (Lighten et al. 

2014b), are likely to be removed.  

The second genotyping method was proposed by Sommer et al. (2013), and is based 

on using replicated samples to genotype (hereafter referred to as the ‘replicated amplicon 

method’, RA). In summary, for likely artefacts (i.e. variants which are 1-2 bp different to a 

more common variant within the same amplicon) this genotyping method checks if the variant 

is also present in a replicate amplicon. If not, it is defined as an artefact; if yes, it can still be 

classified as putative artefact if its frequency is lower than the frequency of any earlier-

defined putative artefact. Separate decision trees deal with chimeras and sequences more than 

2 bp different that do not occur in both replicates.   

The third genotyping method evaluated is the ‘degree of change’ (DOC) method of 

Lighten et al. (2014b). In this approach, rare sequences are clustered with similar (1-3 bp 

different), more common variants within amplicons and their reads are added to the reads of 

the higher frequency variant. The threshold dividing true sequences form artefacts is then set 

within each amplicon separately by ordering variants by their frequency and finding where the 

drop in cumulative frequency of consecutive variants is the highest. Variants that fall below 

the threshold are also manually assessed to identify poorly amplifying true alleles. 

The fourth genotyping method (hereafter referred to as the ‘adjustable clustering 

method’, AC) is based upon a clustering algorithm that uses the error rate of a particular HTS 
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technique and the expected length/s of the amplified sequences to set classifying parameters 

(Sebastian et al. 2016). This genotyping method is based upon the idea of the stepwise 

threshold clustering (STC; Stutz & Bolnick 2014), but it is optimized to accommodate 

efficient analysis of larger datasets. In short, it starts clustering using the most common 

variant in the amplicon as a core of the first cluster, adds similar variants (based on selected 

error rates) and then starts the next cluster with the most common, and yet un-clustered 

variant. The algorithm allows flexibility in setting criteria for similarity and takes into account 

the relative abundance of a variant within a cluster, as originally proposed by  Stutz and 

Bolnick (2014). Sebastian et al. (2016) have benchmarked their algorithm using HTS data 

from a well characterized HLA system for which true sequences were established 

independently, which has not been done for the other three approaches. 

We investigated the repeatability of genotypes retrieved by these methods at different 

coverages (i.e. numbers of reads per amplicon) obtained by subsampling. We also checked 

whether tag jumping affected genotyping results. In addition to investigating the repeatability 

of genotypes within methods, we also assessed the consistency of these genotypes between 

the four methods. High agreement between the different protocols would give us extra 

confidence in the utility of ultra-deep amplicon sequencing characterising the highly complex, 

co-amplifying MHC genes. Furthermore, because researchers have historically used different 

protocols, checking consistency between them is important as it indicates whether genotypes 

and conclusions are comparable between studies.  Finally, we used a simulated dataset to 

compare the ability of different genotyping methods to retrieve known genotypes.  

 

Methods  

Sample collection and DNA extraction 
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A total of 24 samples used in this study were a random subset of samples provided to us by Drs. 

T. Zając, W. Solarz and W. Bielański from the Institute of Nature Conservation PAS, Kraków. 

The samples were collected from a sedge warbler population in the Nida marshes (southern 

Poland; 20°28'–20°32' E, 50°33'–50°35' N) during the 2009 breeding season. The birds were 

mist-netted and blood samples were obtained from the brachial veins of adult birds. The blood 

samples were preserved in 95% ethanol. Genomic DNA was extracted with the Nucleospin 

Tissue Kit (Macherey and Nagel, Germany).  

 

Illumina sequencing  

Illumina sequencing was performed on amplicons obtained with primers on the 24 genomic 

DNA samples. Specific primers were designed based on cDNA and gDNA sequences 

(Biedrzycka et al. unpublished) obtained from warblers to amplify 235-241bp fragments of 

exon 3, encoding the α2 domain of the antigen-binding groove of the MHC class I molecule: 

forward (5’- GAGYGGGGGTCTCCACAC-3’), reverse (5’-

TGCGMTCCAGYTCCTTCTGCCC-3’). The primers were optimised to fit the complete 

range of alleles previously identified for exon 3 of MHC class I genes in sedge warblers 

(Biedrzycka et al. unpublished; not that in line with other publications on MHC diversity, we 

use the term ‘allele’ to describe variants amplified with the same primers, although we cannot 

assign alleles to particular loci). Illumina sequencing primers and unique 6bp tags were added 

to the 5’ ends of both the forward and reverse primers for the first PCR. The tags were custom 

made and designed to differ in at least 2 bp positions. Amplification was performed with 

HotStar Master Mix (QIAGEN), and the reaction was run for 27 cycles at 95oC for 30 s, 66oC 

for 30 s, 72oC for 1 min 30 s. The concentration of the PCR products was estimated by eye 

from agarose gels stained with Gel Red, and PCR products were pooled in approximately 

equimolar quantities. The resulting pools were purified using the MinElute PCR Purification 
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Kit (QIAGEN). Pooled amplicons were then amplified in the second PCR in order to add 

Illumina P5/P7 adaptor sequences (Syed et al. 2009). The pool was diluted by between 10x 

and 100x, depending on the density of the electrophoresis band, and PCR utilising primers 

carrying P5/P7 adaptors was performed for 12 cycles (according to Illumina MiSeq protocol). 

Second-stage products were again run on the gel and purified with the MinElute PCR 

Purification Kit (QIAGEN). Paired-end sequencing runs were performed on Illumina Miseq 

with the Miseq Reagent Kit v2 for 300 cycles (Illumina, Inc., San Diego, CA, USA).  

 Two replicates of the 24 samples, amplified in two independent PCRs and run in two 

separate sequencing experiments (henceforth ‘Replicates 1 and 2’) were amplified using three 

forward and eight unique reverse tags, such that each individual could be recognised by a 

unique combination. These two replicates were used to calculate repeatability of genotyping 

within methods and agreement between methods.  

The same 24 samples were amplified a third time with 24 forward and 24 reverse tags, 

such that none of the tags was shared among samples. The aim of this third replication 

(henceforth Replicate 3) was to assess the magnitude of tag jumping between samples during 

the second PCR, where pooled amplicons are amplified in one PCR reaction, i.e. the potential 

forming of chimeras between sequences from different samples that would result in an 

exchange of 3’ tags.   

 

Pre-processing of Illumina data 

Paired-end reads within each run were merged with AmpliMERGE, a tool based on FLASH 

(Magoc & Salzberg 2011). AmpliMERGE optimized minimum and maximum overlapping 

length parameters (min_overlap=7, max_overlap=15) taking into account the lengths of: 

reads, amplified sequences, primers and barcodes. AmpliMERGE and other amplicon 
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sequencing analysis tools referred in this section are available at: 

http://evobiolab.biol.amu.edu.pl/amplisat/.  

 To preliminarily explore the dataset, the three runs were analyzed with AmpliCHECK 

tool (Sebastian et al. 2016) using default Illumina parameters, minimum amplicon depth of 

5 000 reads and minimum per amplicon frequency of 0.1%. AmpliCHECK revealed three 

major allele lengths among the most abundant variants: 235, 238 and 241 bp. A small number 

of high frequency variants were also found with lengths of 230 and 240 bp (2 variants of 

each), which were present in eight individuals, with one variant per individual. Aligning these 

sequences to the other variants showed deletions of one and 11 nucleotides respectively. We 

thus treated variant lengths of 230 and 240 bp as putative pseudogenes and excluded them 

from genotyping.   

 

Assessment of genotyping repeatability within and between methods 

We used the replicates 1 and 2 to compare genotyping results from four different published 

genotyping methodologies: (1) the allele validation threshold (AVT) method (Radwan et al. 

2012, as applied to ultra-deep sequencing by Herdegen et al. 2014) (2) the replicated 

amplicons (RA) method (Sommer et al. 2013), (3) the degree of change (DOC) method 

(Lighten et al. 2014b), and (4) the adjustable clustering (AC) method using AmpliSAS tool 

(Sebastian et al. 2016), as described below. While our implementation of these methods 

captured their main rationale, we have adjusted some aspects of the post-processing 

recommended in their original descriptions, as detailed and justified below.  

 To estimate how the repeatability of genotyping is affected by coverage, we randomly 

sub-sampled amplicons from Replicates 1 and 2 to obtain subsets of 500, 1 000, 2 000, 5 000, 

10 000, 15 000 and 20 000 reads. For the AVT, DOC and AC methods, we calculated the 

repeatability of genotyping as the percentage of alleles present in both replicates (1 and 2) 

http://evobiolab.biol.amu.edu.pl/amplisat
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with respect to the total number of alleles detected across both replicates. However, for the 

RA method, replicates 1 and 2 were both needed to calculate genotypes, so we do not report 

repeatability for this method.   

To calculate agreement between methods, we first inferred consensus genotypes for 

AVT, DOC and AC using only the alleles that were recovered in both replicates (RA uses 

both replicates to yield one genotype). Based on these consensus genotypes, we calculated the 

agreement of genotypes between all tested methods as the percentage of alleles present in 

consensus genotypes obtained by two different methods. 

 

The Allele Validation Threshold method (AVT) The AVT method establishes the frequency 

thresholds delimiting artefacts from true alleles based on examination of frequencies of 

putative artefacts (indels, 1-2 bp substitutions and chimeras). To determine these thresholds 

we used AmpliCHECK software (Sebastian et al. 2016) and then followed the modification of 

the protocol described in Herdegen et al. (2014), implemented within the AmpliLEGACY 

tool. To identify thresholds for facilitating the identification of true alleles, variants were 

ranked by their maximum per amplicon frequency (MPAF), by which each variant was 

represented across the entire dataset. Singletons were first removed. Then, starting from the 

MPAF of 0.1 (a value lower than in other studies because we expected much larger number of 

variants per amplicon), we checked whether the variant within each amplicon could be 

explained as a 1-2 bp substitution in a more common variant within the same amplicon or a 

chimera (a variant which can be explained by joining the forward and reverse sections of two 

more frequent variants, with ≥10 bp of length and ≥3 bp of difference attributable to each 

‘parental’ sequence; see AmpliCHECK documentation for details). Such variants were 

considered putative artefacts. Appropriate annotation is performed automatically by 

AmpliCHECK. At the highest coverage (20 000 reads), 99% of variants within the 0.1% - 
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0.18% MPAF interval were classified as putative artefacts. Consequently, for each amplicon 

in the entire dataset, all variants below 0.18% per amplicon frequency (PAF) were considered 

artefacts. Similarly, all variants below 0.60, 0.30, 0.15, 0.16, 0.16, 0.16 and 0.18% per 

amplicon frequency (PAF) were considered artefacts for amplicon depth subsets 500, 1 000, 2 

000, 5 000, 10 000, 15 000 and 20 000 respectively.  

Unlike in earlier studies (e.g. Herdegen et al. 2014; Promerová et al. 2012; Radwan et 

al. 2012) we could not find a usable upper MPAF threshold, above which none of the variants 

would be classified as putative artefacts. This is because some high frequency variants, 

present in many individuals, differed by 1-2 bp from some more common variant within the 

same amplicon. Such variants constituted 18-22% of all variants left above the 0.18% PAF 

threshold, and their PAFs were often very high (up to 8.14 and 7.41% PAF in the first and 

second replicate at coverage = 20 000). Thus, our ‘grey zone’, in which alleles are called 

based on comparison to more common alleles within the same amplicon (Radwan et al. 2012) 

comprised practically all variants above the lower threshold. However, because high 

frequency variants occurring with slightly more common 1-2 bp different variants are likely to 

represent true alleles, we only considered them as artefacts if their frequency was low enough 

to be explained as sequencing error. Based on estimates showing that maximum substitution 

error frequency for Illumina may reach 6% for some specific motifs (McElroy et al. 2012), we 

conservatively considered variants as artefacts if their frequency was <10% of a more 

common variant within the same amplicon, from which they differed by 1-2 substitutions.   

 

The Replicated Amplicon method (RA) The RA method, in addition to identifying putative 

artefacts, relies on agreement between two independent amplicons derived from the same 

sample. It was implemented using the automated online tool AmpliLEGACY  

(http://evobiolab.biol.amu.edu.pl/amplisat/) following, as closely as possible, the original 

http://evobiolab.biol.amu.edu.pl/amplisat
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amplicon-by-amplicon three-step workflow (Sommer et al. 2013). In the first step, singletons 

are discarded as artefacts, the most abundant variant is marked as putative allele, and the rest 

of the variants are classified into three groups. The first group (1-2 diff.) comprises of variants 

differing by 1 or 2 bp from another variant of higher frequency. The second group (>2 diff.) 

contains variants differing by more than 2 bp from other variants. The third group comprises 

variants that could be explained as the combination of another two higher frequency variants 

(i.e. likely PCR chimeras). Sequence comparisons are performed by pairwise global 

alignments as explained in Sebastian et al. (2016). To avoid classification of 1-2 bp 

differences as chimeras (e.g. in the 3' or 5' extreme of the sequence), only variants >2 bp 

different from parental sequence were classified as chimeras. In the second step, the presence 

of a variant in an amplicon replicate is checked. The following variants are treated as artefacts 

at this step: 1-2 bp diff. variants which did not occur in a replicate, >2 bp diff. variants which 

do not occur in a replicate or in other individuals, and chimeras which occur with parental 

sequences in at least one replicate. Remaining sequences are classified as putative alleles, 

putative artefacts or unclassified variants according to their frequencies (if it is lower than any 

putative artefact from step 2 or not) and their presence in other individuals. For more details 

see (Sommer et al. 2013). 

 RA workflow may classify the same variant differently in different replicates of the 

same individual (e.g. can be below artefact frequency threshold in one replicate, but not in the 

other, see File S1, Supporting information, for examples). While the authors of the RA 

method suggest manual curation of cases in which the two genotypes disagreed (Mazzoni, 

personal communication), we think this may involve a degree of arbitrariness unless strict 

decision rules are applied. Therefore, whenever intermediate classifications differed between 

replicates, we used a consensus (i.e. alleles classified as putative alleles in both replicates) to 

obtain final genotypes for comparisons with other methods. Our approach is conservative (i.e. 
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decreases the chance of reporting artefacts as true alleles), and can be easily replicated 

between labs. Nevertheless, in our dataset, manual curation yielded similar final genotypes, 

because the majority of discordant classifications were related to likely sequencing errors (i.e. 

1-2 bp substitutions between the sequence and that of a higher frequency variant present 

within the same amplicon).  

 

Degree Of Change method (DOC) The DOC method described in Lighten et al. (2014b) 

estimates the number of true alleles present in each amplicon independently based on the 

degree of change (DOC, the second derivative) in the cumulative sequencing depth between 

depth-ranked variants in an amplicon. The variant with the highest DOC value is considered 

the last true allele. We used the automatic DOC method available in AmpliLEGACY, 

following as closely as possible the original workflow of Lighten et al. (2014a). The DOC 

method first entails an error correction (i.e. clustering) step, where sequences that differ by 1-

3 bp from a higher frequency variant (parental) are considered putative errors and their reads 

are added to the parent sequence. Because Lighten et al. (2014b) state that putative errors 

were “generally <2% depth”, we adapted this threshold, and pooled variants only if they had 

frequencies <2% compared to putative parental sequence. Following Lighten et al. (2014b), 

AmpliLEGACY performs error correction using pairwise global alignments of variants within 

each amplicon.  

 After error correction, the rate of change (first derivative) in cumulative sequencing 

depth is calculated for each variant resulting from the previous step, and then the percentage 

of DOC among variants. DOC value is calculated taking as many variants as the maximum 

number of expected alleles for a single individual set by researchers. Based on preliminary 

examination of the numbers of variants with AmpliCHECK, we set this maximum at 60.   
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Lighten et al. (2014b) recommended that amplicons which do not show “an obvious 

reduction in sequencing depths between putative alleles and artefacts, or an inflection point in 

a linear plot of cumulative sequencing depths at the point of greatest DOC” are removed. 

However, in our assessment, our data did not show any obvious distinctions between 

amplicons in this respect (compare e.g. Fig. S1, Supporting information), likely because our 

system included so many alleles as to which make identification of an inflection point 

problematic (Lighten et al. (2014b). We therefore included all amplicons in our analyses.  

Lighten et al. (2014b) further recommended that poorly amplified putative alleles 

should be distinguished from contaminants on the basis that the latter should be identical to 

high copy number putative alleles in other amplicons. However, if all low frequency variants 

(which we defined as occurring below the greatest DOC, up to a maximum of that ranked 

60th with respect to frequency) were used, it would lead to gross overestimation of the 

number of true variants, due to the presence of complex, but repeatable, errors (e.g. unfiltered 

artefacts  >3 bp different from parental sequence) that would be classified as low amplifiers 

(see Supplementary material), so we omitted this step. 

 

Adjustable Clustering with AmpliSAS (AC) AmpliSAS performs clustering of variants based on 

the parameters set by users depending on expected error rates (Sebastian et al. 2016). We used 

the AmpliSAS default parameters for Illumina data: a substitution error rate of 1%, and an 

indel error rate of 0.001%. Additionally we adjusted the ‘minimum dominant frequency’ 

clustering threshold to 10%, i.e. only sequences with frequency below this threshold were 

clustered with parental sequence (Sebastian et al. 2016), in order to retain true similar variants 

but eliminate high-frequency, motif-specific errors (McElroy et al. 2012), as explained above 

for the AVT method.  
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Following clustering, AmpliSAS allows the filtering of artefacts, i.e. removing low 

frequency clusters and clusters formed by chimeras of more common variants within an 

amplicon. We removed low frequency variants by setting the 'minimum amplicon frequency' 

filtering threshold to 0.4% PAF. This value is based upon the observation that when clusters 

within an amplicon were ordered by descending PAF, a distinct drop in frequency was 

observed at this value (Fig. S2, Supporting information). This drop was clearly visible at 

higher coverage subsets (above 5 000 reads), but, for consistency, a value of 0.4% PAF was 

used throughout the analyses. We also removed chimeras by enabling the appropriate 

AmpliSAS option. Chimeras represented a considerable proportion (on average 68.43%, 

maximum of 96%) of the low frequency variants which remained after clustering as, in 

contrast to sequencing errors, they cannot be incorporated to the parental sequences. 

However, they had very low PAFs (maximum 0.04%), so they would also have been removed 

by the minimum PAF criterion.  

 

Variant amplification efficiencies and genotyping confidence  

We estimated variant amplification efficiencies using R scripts provided by Sommer et al. 

(2013). Their method uses a maximum likelihood optimization approach to assign a single 

efficiency value to each allele, based on observed frequencies in a real dataset. The 

calculations were preformed independently for Replicate 1 and 2, based on coverages reported 

by the AC method for 20 000 reads subset. We chose the results of the AC method as it 

clusters errors to their parental sequences, rather than discarding them. As some sequence 

motifs were reported to be more prone to errors (McElroy et al. 2012), alleles bearing them 

might suffer more intense ‘coverage loss’, which could later obscure the genuine variability in 

amplification efficiency. We also adapted the calculations from Sommer et al. (2013) to 

estimate a required allele coverage that with 99.0% confidence would yield at least 10 reads 
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of the lowest amplifying allele in an individual with the maximal number of alleles. For the 

details of the simulation see Sommer et al. (2013). The simulation was run 100 times, and the 

median is reported as a result. The provided scripts need a desired number of reads to be 

observed, rather than per amplicon frequency, therefore we cannot directly compare this result 

with minimum per amplicon frequency requirements used in earlier steps of our AC analysis. 

However, we calculated the minimal coverage that would yield at least 80 reads for each 

allele (0.4% PAF at coverage 20 000) with 99.0% confidence. In addition, we tested how the 

theoretical confidence of retrieving identical genotypes to those of AC (in Replicate 1, 

coverage 20 000) changed across different subsets of sequencing depth. We consider a 

genotype to be sufficiently covered if each allele reaches a minimal threshold of 0.4% PAF, 

that is 2 reads for 500 reads subset, 4 reads for 1 000 reads subset, etc. We simulated the 

number of reads corresponding to 90% of each coverage to account the loss of data due to 

removal of chimeras and unclustered errors with more than two substitutions (approximately 

10% of reads). 

 

Simulations 

In order to better understand how well different methods retrieve known genotypes, we used a 

simulated dataset derived from consensus sequences of AC simulation (original genotypes, 

alleles and amplification efficiencies used as template in the simulation are shown in File S2, 

Supplementary information). The consensus genotypes of 24 individuals constituted ‘true 

genotypes’ in our simulations. We then simulated sequencing reads by (i) allowing uneven 

amplification efficiency of variants, (ii) simulating chimeras and (iii) errors (substitutions and 

indels). To simulate differences in amplification efficiency between variants, we used 

estimates obtained as described above using the pipeline of Sommer et al. (2013). Each 

variant was thus ascribed its specific amplification efficiency (calculated as a mean from 
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estimates obtained in Replicates 1 and 2). To obtain a set of simulated reads for a given 

individual, its variants were drawn with a probability equal to its specific amplification 

efficiency. Chimeras were created by random mixture or two variants in 15% of the reads (a 

value estimated from our dataset, see Results, section Evaluation of the extent of tag jumping 

in the second PCR). Errors were then introduced at random nucleotide positions with a 

substitution probability of 0.1% and indel probability of 0.001% (Loman et al. 2012; Ross et 

al. 2013). Errors could also occur in primer and barcode sequences. Additionally, motif-

specific errors were introduced. Specific Illumina v5 error-prone DNA motifs reported by 

McElroy et al. (2012) were located along the sequences and their specific errors inserted at 

the average frequencies reported by the authors (Table 3 in McElroy et al. 2012). Four sets of 

50 000 simulated single end reads were generated with the tool AmpliSIM 

(http://evobiolab.biol.amu.edu.pl/amplisat/index.php?amplisim), each set being equivalent to 

one amplicon sequencing experiment. The first two sets of simulated reads were used to 

compare the results of AVT, RA and AC genotyping methods to the true genotypes, and the 

3rd and 4th sets were treated as the replicate experiments of the 1st and 2nd for the RA 

genotyping method. For each amplicon we calculated false negative rate (FNR) and false 

discovery rate (FDR) in the following ways: FNR = FN/(TP+FN), FDR = FP/(TP+FP); where 

TP, number of true alleles in a known genotype; FP, number of false (artefactual) alleles 

called in a genotyping procedure; FN, number of false negatives, undetected alleles by a 

genotyping procedure. 

 

Evaluation of the extent of tag jumping in the second PCR  

Replicate 3 was used to evaluate the extent of tag jumping in the second PCR, in which 

Illumina adaptors were added to pooled amplicons (see Illumina Sequencing section above).  

Twenty two out of 24 samples run with unique sets of forward and reverse primers in 
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Replicate 3 were retrieved after de-multiplexing, of which three did not reach the 20 000 

coverage required for genotyping. Replicate 3 was filtered using the same AmpliCLEAN 

parameters as used for processing replicates 1 and 2 (see above), and all the possible 462 tag 

jumping combinations (22 individuals x 21 not-self tags which were not originally present in 

any amplicon in this set of samples) were extracted and quantified. To assess if tag jumping 

during the second PCR affected genotyping results, we genotyped Replicate 3 using AC 

method as described above. We then compared the result with the consensus genotype of 

Replicates 1 and 2 obtained with the same method. 

 

Results 

MHC class I exon 3 sequences were genotyped successfully in 24 sedge warbler individuals 

using Illumina MiSeq. For the AC method (which proved the most replicable, see below) the 

distribution of number of alleles per individual varied between 19 and 42. In total we verified 

403 alleles in 24 individuals, an impressively high MHC diversity in a relatively small 

dataset.  

 

Numbers of variants called by different methods 

The number of alleles per individual called across coverages of 500-20 000 reads per 

amplicon was similar for the three genotyping methods AVT, RA and AC (Fig. 1). The fourth 

genotyping method, DOC, called a similar average number of alleles to the other genotyping 

methods, but the range in the number of alleles was considerably greater, especially at low 

coverages (Fig. 1, File S1, Supporting information). This discrepancy resulted mostly from a 

few cases when DOC called a very low number of alleles compared to other methods and to 

most other DOC genotypes.  
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Repeatability of MHC genotyping within methods at different coverages 

The repeatability of allele calling between two separate sequencing experiments (and 

independent PCR runs) within AVT, DOC and AC is shown in Figure 2. The repeatability 

increased steeply with coverage until 5 000 reads. Above this coverage, all three methods 

reached or exceeded a mean repeatability of 90% (AVT: 95%, DOC: 90%, AC: 98%). At 

20 000 reads the repeatabilities within methods reached 97%, 91% and 99% for AVT, DOC 

and AC, respectively.  

 

Agreement of MHC genotyping between methods 

The agreements between consensus genotypes assigned by AVT, RA and AC were high and 

typically reached or exceeded 90% at a coverage of 2 000 reads (Fig. S3; because of high 

agreement between AVT and AC, only the latter is presented in Figure 3 for clarity). As can 

be seen in Figure 3, DOC agreed less well with other methods, especially at low coverages. At 

medium coverages (5 000 – 15 000 reads), the average agreement between DOC and other 

methods was 85-90%, and at the highest coverage (20 000 reads) DOC reached 88% of 

agreement with RA and 91% of agreement with AVT and AC genotypes (File S1, Supporting 

information). Above a coverage of 5 000 reads, 75% of the consensus genotypes were 

identical between DOC and AC (Fig. 3, File S1, Supporting information).  The differences 

occurred when DOC assigned unusually low numbers of alleles in one or both replicates (e.g. 

amplicons 2 and 17; Fig. S1, File S1, Supporting information).  

 

Variants’ amplification efficiencies and genotyping confidence 

Relative efficiencies of amplification calculated according to Sommer et al. (2013) ranged 

between 4.77 and 0.21 for Replicate 1, and between 5.03 and 0.24 for Replicate 2. The 

distribution of the amplification efficiencies is shown in Figure S4a (Supporting information). 
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The efficiencies for the same alleles were highly correlated between replicates (correlation 

coefficient: 0.94, Fig. S4b Supporting information).  

The lowest amplification efficiency calculated was 0.2, and the highest number of 

alleles found in one individual was 42. According to the calculations adapted from Sommer 

et al. (2013) the coverage of 3 819 reads would be necessary to reach 99.0% genotyping 

confidence, with at least 10 reads of the lowest amplifying allele present in an individual 

possessing 42 alleles. To reach at least 80 reads per allele (0.4 PAF for 20 000 subset), with 

the same confidence level, minimal coverage of 20 902 reads would be needed.  

Tests of confidence for retrieving genotypes identified with the AC method across 

different coverage showed a constant upward trend. With 500 reads the median probability of 

obtaining identical genotypes was only 68% (mean: 65%), but with 5 000 reads the median 

confidence in genotyping reached 99% (mean: 96%), and at 20 000 reads 21 out of 24 

genotypes would be retrieved with a confidence of 99.9% or higher. For complete results see 

Table S2 (Supporting information). 

 

Simulations 

Genotyping of the simulated dataset showed that genotyping reliability increases with 

coverage for AVT, DOC and AC (Fig. 4). At 5 000 reads and above, all methods yielded 

almost no false negative results and all true alleles are recognized as such. Unlike for the real 

dataset, we observed premature highest DOCs yielding untypically low number of called 

alleles only below the coverage of 10 000 reads (File S3, Supporting information). At lower 

coverages, to varying extent, all methods falsely identify artefacts as alleles, but for AVT, 

DOC and AC the false discovery rates drop to zero at and above 5 000 reads. For RA, 

however, we observed high rates of false discoveries even above 5 000 reads, and the false 

discovery rate increased further with coverage (Fig. 4). 
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Evaluation of the extent of tag jumping in the second PCR 

 The search for all possible 462 tag jumping combinations (22 amplicons x 21 tag 

combinations which were not originally present in any amplicon in this set of samples) in 

Replicate 3 resulted in a total number of 239 436 reads, which constituted about 15% of 

1 610 545 reads with correct tag combination. However, reads with wrong tag combinations 

were distributed among 95 917 unique variants, such that the per amplicon frequency for any 

variant with wrong tag combinations never exceeded 0.003%. Such low frequency variants 

would thus not affect genotyping in Replicates 1 and 2, in which non-unique tag jumping 

during the second PCR of amplicon pools would result in these variants being ascribed to the 

wrong individuals. Indeed, this was confirmed when we compared the consensus genotypes as 

determined by AC (Replicates 1 and 2) with those from a Replicate 3 (barcoded with a 

combination of unique tags). We obtained coverage > 20 000 reads from for 19 individuals in 

Replicate 3. The average agreement of their genotypes with the consensus of Replicates 1 and 

2 was 98% (range 91-100%). The mean number of alleles for the 19 individuals in the three 

MiSeq runs was identical (35 alleles per individual). There was thus no indication that using 

non-unique combinations of forward or reverse tags resulted in additional sequences assigned 

to individuals due to tag jumping.  

 

Discussion 

Our results show that HTS provides a reliable tool for genotyping gene families with a large 

number of co-amplifying loci when the read depth is satisfactory (here, at least 5 000 reads 

per amplicon). Previous ultra-deep genotyping studies have examined systems with lower 

MHC complexity consisting of one to eight co-amplifying variants (Herdegen et al. 2014; 

Lighten et al. 2014b). In sedge warblers, the number of co-amplifying variants exceeded 40 in 
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some individuals, making filtering true alleles from artefacts challenging. Despite this, we 

demonstrated that at or above 5 000 reads per amplicon, such complex, multi-locus genotypes 

can be retrieved in a replicable manner. The sufficiency of this coverage was independently 

confirmed using calculations of genotyping confidence according to Sommer at al. (2013), 

which for AC method, reached the median of 99.9% at the coverage of 5 000 reads. The 

accuracy of the genotyping is supported by both the high agreement between genotypes 

obtained from raw data by different genotyping methods, and by our analysis of a simulated 

dataset. 

The four different genotyping methods are based on different principles: AVT 

(Radwan et al. 2012) sets a threshold based upon the observed frequencies of putative 

artefacts, RA (Sommer et al. 2013) relies upon the occurrence of the same variant in an 

amplicon replicate, DOC (Lighten et al. 2014b) relies upon a drop in sequencing depth 

between true alleles and artefacts, and AC (Sebastian et al. 2016) clusters variants in a fashion 

that is customized to platform-specific error profiles. High agreement across genotyping 

methods despite these differences adds confidence in the reliability of genotyping, which we 

see as the main benefit of the comparisons we have performed in the present paper. 

Additionally, our comparisons have revealed some strengths and weaknesses to the four 

genotyping methods tested.  

 The AVT method yielded very similar genotypes to AC, so we do not discuss it further 

in the between-protocol comparisons reported below. The genotypes obtained using RA and 

AC agreed well across coverages between 1 000-20 000 reads. However, even at high 

coverages agreement between some genotypes was below 90%, illustrating the difficulty in 

genotyping highly complex MHC genotypes. Agreement between the genotypes obtained 

using the DOC and AC methods was low at and below coverages  of 5 000 reads, but above 

5 000 these two methods reached the highest agreement, with very few disagreements 
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resulting from outlier genotypes obtained using the DOC method, as discussed in detail 

below. Similar patterns of discrepancies were observed between the RA and DOC. 

Low congruence of DOC with RA and AC at low coverages highlights the fact that 

DOC is sensitive to stochastic variation in allele frequencies inevitably worsened at low 

coverage. However, this should not be seen as a weakness, as this method was originally 

designed for ultra-deep sequencing (Lighten et al. 2014b). Lighten et al. (2014b) noted that 

coverages of thousands of reads may be necessary for the DOC method to reliably genotype 

individuals with dozens of co-amplifying alleles. Indeed, at high coverages, the repeatability 

of DOC between two independent PCRs and sequencing experiments in our study at 20 000 

coverage reached 91% , which exceeded that reported by these authors for a much simpler 

guppy MHC system (84% repeatability). Genotyping of the simulated dataset showed high 

reliability of DOC at coverages > 5000 reads. In real data, however, even at the highest set of 

coverages (10 000 – 20 000) a few cases were found where DOC called exceptionally low or 

exceptionally high number of alleles compared to both RA and AC. The presence of the 

artefact cut-off threshold (i.e. the highest DOC) after unusually low numbers of alleles called 

by DOC in some amplicons might result from (1) preferential amplification of some alleles 

during PCR or (2) real differences in the number of copies of variants (true and artefactual 

alleles) present in a genome, which may cause the highest DOC to occur between variants 

which differ in the numbers of copies in the genome. Indeed we found the more than 20-fold 

differences in variant “amplification efficiency”, and the estimates were highly correlated 

between replicates, indicating that the differences were consistent. It cannot be known, 

however, whether these differences result from uneven amplification or from a disparate 

number of variant copies among genomes. While variation in “amplification efficiency” in 

our simulated dataset did not prevent reliable genotyping by DOC, one has to bear in mind 

that the efficiency was calculated as the average across genotypes. In real dataset, context-



25 

 

specific differences in amplification efficiencies or in the numbers of copies of particular 

variants in a given genome might be higher, which might explain appearance of (few) cases of 

premature maximum DOC values in real data even at the highest coverages.  

Our protocol did not involve screening of variants below the highest DOC for 

consistent low amplifiers, as suggested by Lighten et al. (2014b), because in our dataset it 

would have led to gross overestimation of the number of alleles across the dataset (see 

methods).  In an attempt to implement screening for low amplifiers, we performed an 

additional analysis in which we excluded variants below 0.4% PAF (a minimum threshold 

used for AC, see methods for justification but note that Lighten et al. 2014a,b argue against 

using any fixed thresholds). However, this modified screening protocol was not very effective 

in dealing with cases in which apparently too few alleles were called, adding just a few 

variants to the final genotypes (File S4, Supporting information).  Another difference between 

our analysis and that of Lighten et al. (2014b) was that we did not eliminate “low quality 

amplicons” based on the absence of a clear inflection point in a plot of cumulative distribution 

of variants. However, as Lighten et al. (2014b) note, in a system with many MHC loci the 

presence/absence of such inflection point is not easily discernable. Furthermore, the 

differences in the cumulative sequencing depth plots of ‘good’ amplicons versus amplicons 

with abnormally low or high numbers of alleles may not be obvious (see Fig. S1, Supporting 

information). Even if ‘low quality amplicons’ could be eliminated based on objective criteria, 

this would imply the loss of data which could otherwise be reliably retrieved by other 

methods.  

Analysis of the simulated dataset revealed that the RA method overestimates the 

number of true variants even at ultra-high coverages, because at ultra-high converges there is 

a reasonably high chance of getting the same sequencing error in both replicates. Indeed for 

real data, RA yielded a higher number of alleles than other methods, so it appears that our 
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conservative approach of using the consensus of intermediate genotype classifications only 

partly dealt with this problem. Thus, the application of RA to ultra-high coverage data may 

require additional criteria. One possibility is to introduce a minimum PAF. To test such a 

modification, we carried out an additional analysis using a minimum of 0.4% PAF criterion 

(as for AC) and indeed, we obtained high agreement with genotypes obtained by AC 

genotyping method (File S4, Supporting information). Likewise, application of 0.4% PAF 

threshold to the simulated dataset effectively eliminated all repeatable errors and yielded 

correct genotypes (File S5, Supporting information).  

Thus, using a minimum PAF threshold (based on examination of the data, see 

methods) appears to be quite effective in eliminating artifacts.  Lighten et al. (2014b) applied 

a fixed threshold of three sequences per amplicon to their data (as used by Zagalska-Neubauer 

et al. 2010) to filter artefacts, and concluded that such a threshold would lead to 

overestimation of the number of variants compared to DOC or copy number variation 

methods. However, recent studies using the AVT method (e.g. Herdegen et al. 2014; 

Promerová et al. 2012; Radwan et al. 2012; Sepil et al. 2012) used PAF thresholds (based on 

assessment of observed artefacts frequency), rather than fixed thresholds. Using the criterion 

of three or even ten reads (also tested by Lighten et al. 2014b) on a set of data with thousands 

of reads per amplicon inevitably leads to overestimation of the number of alleles (see File S6, 

Supporting information), but this would not occur if PAF thresholds were used. In fact, 

Herdegen et al. (2014) used a PAF threshold of 3% for AVT typing of guppies and obtained 

similar ranges of number of alleles in guppies to those reported by Lighten et al. (2014b). 

Also in the present study we found that AVT and DOC yielded similar results.  

Overall, for genotyping of highly complex system, the AC method appears to be the 

protocol of choice, because of its high reliability (as shown by simulations and agreement 

with other methods) and repeatability. The AVT genotyping method gave very similar results 
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to AC, but was somewhat inferior in terms of repeatability. RA also agreed reasonably well 

with AC across the range of coverage, suggesting that it is unnecessary to run replicates of all 

samples in order to obtain reliable genotypes. As mentioned above, RA appears to suffer from 

an increased frequency of false positives at ultra-high sequencing depth compared to other 

methods, and thus requires adjustment to account for repeatable sequencing errors. Finally, 

the DOC method yielded identical genotypes to AC for most amplicons, but produced a few 

outliers even at very high coverages. 

 Although we found evidence of tag jumping in the second PCR (i.e. tag combinations 

that could not be assigned to any amplicon), this phenomenon had little apparent effect on the 

final genotypes. Indeed Replicate 3 (unique tags) yielded very similar genotypes to Replicates 

1 and 2 (unique tag combinations, but forward or reverse tags shared between individuals). 

Thus, despite the fact that the chimeric variants with swapped tags made up as many as 15% 

of reads, they were distributed over many variants (i.e. many parental pairs combination, with 

each pair giving rise to many possible chimeras), each with a negligibly low per amplicon 

frequency. Consequently, each variant was not frequent enough to make a difference to the 

final genotypes. Nevertheless, these chimeric sequences constituted a considerable loss of 

data. When barcoding is performed on a large number of individuals, it is not practical to use 

unique pairs of tags. In such cases, the loss of data from tag-jumping could be partially 

avoided by PCR-free library construction. However, tag jumping may also occur during 

ligation of sequencing primers (Schnell et al. 2015), but this risk can be avoided if, as in some 

systems, sequencing primers can be added in a single step, without the requirement for the 

second PCR of pooled amplicons (see e.g. Herdegen et al. 2014).  

In the course of this study, we have documented the highest-to-date number of MHC 

class I alleles per individual in a passerine bird, belonging to a group characterized by 

extreme MHC diversity (e.g. O’Connor et al. 2016, Sepil et al. 2012; Zagalska-Neubauer et 
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al. 2010).  The number of MHC alleles per sedge warbler individual varied considerably, 

from 19 to 42 alleles according to AC method, suggesting substantial CNV. Our result show 

that systems with many co-amplifying loci and CNV can be reliably genotyped using 

reasonably high read coverages (at 5000 reads or higher for RA or AC in the present study). 

Knowledge of such threshold in coverage should allow researchers to efficiently and cost-

effectively genotype the large datasets (hundreds of individuals) that can be required to 

address questions in ecology and evolutionary biology. Such studies would be also facilitated 

by our finding that tag jumping does not significantly confound genotyping results, which 

permits cost-effective tagging of large sets of individuals without the need to use a unique pair 

of primers for each individual.   

 

Conclusions 

Our study demonstrates that HTS enables accurate genotyping of large sets of co-amplifying 

loci if sufficient coverage per amplicon is reached. This will allow researchers to address 

important questions in molecular ecology and evolutionary biology, such as the evolution of 

MHC copy number and MHC associations with disease resistance and mate choice. Our 

analyses indicated that of the four protocols tested, AC was the most effective. Moreover, AC 

can easily be implemented with existing software (Sebastian et al. 2016). Tag jumping during 

the second PCR of pooled amplicons caused some data loss, but did not change the 

genotyping results.  
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Figures 

 

Figure 1. Dot plot comparison of the per-individual number of alleles called using different 

methods: AVT – allele validation threshold (Radwan et al. 2012), RA – replicate amplicon 

(Sommer et al. 2013), DOC - degree of change (Lighten et al. 2014b), AC - adjustable 

clustering using AmpliSAS tool (Sebastian et al. 2016), and at different levels of coverage. 

Only the 1st replicate is shown for AVT, DOC and AC. 
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Figure 2. Comparison of genotyping agreement between two replicates using different 

methods: AVT – allele validation threshold (Radwan et al. 2012), DOC - degree of change 

(Lighten et al. 2014b), and AC - adjustable clustering using AmpliSAS tool (Sebastian et al. 

2016). Within each subset, repeatability is calculated as the number of identical alleles 

divided by the total number of alleles called in both replicates in a given individual (both 

common and unique variants for each replicate). Figure represents Tukey’s boxplot: the 

bottom and top of each box represents the 1st and 3rd quartiles, the band indicates the 2nd 

quartile (the median), whiskers represent the lowest/highest datum within 1.5 interquartile 

range of the lower/upper quartile and outliers are represented by full circles.  
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Figure 3. Pairwise comparison of genotyping agreement across subsets, between : RA – 

replicate amplicon (Sommer et al. 2013), DOC - degree of change (Lighten et al. 2014b), and 

AC - adjustable clustering using AmpliSAS tool (Sebastian et al. 2016). Agreement is 

calculated as the number of identical alleles dived by a summarized number of alleles called 

by the two methods (both common and unique alleles for each method) in a given individual. 

Common alleles from replicates are used. Figure represents Tukey’s boxplot. For extended 

pairwise comparison among all methods (including AVT – allele validation threshold 

(Radwan et al. 2012) see Figure S3. 
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Figure 4. False negative (A) and  false discovery (B) rates calculated for simulated datasets 

for different methods: AVT – allele validation threshold (Radwan et al. 2012), RA – replicate 

amplicon (Sommer et al. 2013), DOC - degree of change (Lighten et al. 2014b), AC - 

adjustable clustering using AmpliSAS tool (Sebastian et al. 2016), and at different levels of 

coverage. Only the 1st replicate is shown for AVT, DOC and AC. 

 

 

 


